

R701P

MICROSTEPPING DRIVER

USER MANUAL

VERSION 6.70

TABLE OF CONTENTS

Technical Support	1
1. FEATURES	4
Input Option Header	4
Using +5V, Common Ground, and Disable for Optos	4
2. ELECTRICAL SPECIFICATIONS	4
3. OPERATING SPECIFICATIONS	4
Heatsinking	5
4. MECHANICAL SPECIFICATIONS	5
Dimensions	5
5. PIN ASSIGNMENTS	6
6. CONNECTION SPECIFICATIONS	
List of Parts	6
How to Connect	7
Optional:	7
Resistor Values to set the Current	8
Resistor Values for the Opto Supply	9
7. CONFIGURING AND CONTROL OF THE R701P	10
Adjust Trimpot	10
Auto Current Reduction	10
NEMA 34 and NEMA 42 Motor	10
Option Set Switches	11
Main Connector	12
8. MOTOR CONNECTIONS	12
4 Lead Wire Motor Connection	12
6 Lead Wire Motor Connection (Half Winding)	12
6 Lead Wire Motor Connection (Full-Winding)	13
8 Lead Wire Motor Connection (Parallel Connection)	13
8 Lead Wire Motor Connection (Series Connection)	13
9. TROUBLESHOOTING & FAQ	14

Thank you for purchasing the R701P Driver. This product is warranted to be free of manufacturing defects for one year from the date of purchase.

Technical Support

By Telephone: 408-919-0200 (Mon.-Fri., 8:00 a.m.-5:00 p.m.)

By Email: techsupport@linengineering.com

Our technical support group is glad to work with you in answering your questions. If you cannot find the solution to your particular application, or, if for any reason you need additional technical assistance.

PLEASE READ BEFORE USING

Before you start, you must have a suitable step motor, a DC power supply suitable for the motor and an optional current resistor. The motor's rated phase current must be between 0.8 Amps and 7 Amps when using the dip switches, or between 0 Amps to 7 Amps when using the current resistor. The power supply voltage must be between 4 times and 20 times the motor's rated voltage. The current set resistor may be a ¼ Watt, 5% part. Finally have a STEP and DIRECTION pulse source available.

DISCLAIMER

The information provided in this document is believed to be reliable. However, no responsibility is assumed for any possible inaccuracies or omissions. Specifications are subject to change without notice.

Lin Engineering reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. Lin Engineering does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Special Symbols

The "exclamation mark" indicates a WARNING and that this information could prevent injury, loss of property, or even death (in extreme cases).

1. FEATURES

R701P

- 10 microstepping driver
- Common Ground or Common + 5 Volts Input Option Available
- Optically isolated Step, Direction, and Disable/Enable inputs
- Automatic Current Reduction
- Adjustable trimpot for noise and vibration reduction
- Operates from 18 to 80 VDC
- Selectable Driver Peak Current Ranges: 0 to 7 Amps
- Low Power Dissipation from 1 to 12 Watts (1 to 7 Amps)
- Excellent sinusoidal current waveform for smooth operation
- Low current ripple for low noise
- Low Cost
- High Efficiency

Input Option Header

The R701P has no internal jumpers for input options. The inputs can be driven by a source where +5V, +3.3V or ground is only available.

Using +5V, Common Ground, and Disable for Optos

Your negative 5V supply will connect to the "+5 VDC" line, Pin 10. The negative side of your step pulses should then connect to your "Step" line, Pin 9. The positive side of your +5V and the positive side of your step pulses should be tied together.

To disable the drive, connect the disable pin to Pin 12, the end of the current set resistor pin. To change direction of rotation, connect the direction pin to the +5V and + step pulse connection.

2. ELECTRICAL SPECIFICATIONS

R701P

Supply Voltage: +18 to 80 VDC Peak Current: 0 to 7 Amps

Auto Current Reduction: 70% of set current, 1 second after last Step Pulse

Quiescent Current: 15 mAmps or less

Resolution: 10 microstepping Motor Inductance: 1-50 mH

3. OPERATING SPECIFICATIONS

Step Pulse Time on falling edge (0) (COMMON 3.3V-5V): $0.5 \mu S$ minimum Step Pulse Time on rising edge (1) (COMMON 3.3V-5V): $3.0 \mu S$ minimum

Step Pulse Time on falling edge (0) (GND): 3 μ S minimum Step Pulse Time on rising edge (1) (GND): 0.5 μ S minimum

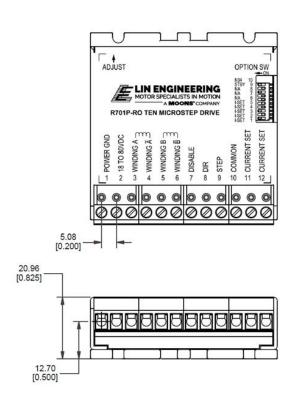
Direction Setup: 0 µS minimum

Operating Temperature: 0° to 70° Celsius Humidity Range: 0 to 95% (non-condensing) Power Dissipation: 1 to 13 Watts (1 to 7 Amps)

Heatsinking

The R701P needs an additional heatsink for current settings greater than 3 Amps. The case temperature (measured from the bottom plate) <u>should not</u> exceed 70° C. For best results, use heatsink compound between the R701P and the heatsink.

4. MECHANICAL SPECIFICATIONS


Size: 2.5" x 2.5" x 0.838" (63.5 mm x 63.5 mm x 21.3 mm)

Weight: 3.6 oz (100 gm)

Mounting: Four #6-32 screws, 1.75" x 2.372" (44.5 mm x 60.2 mm)

Cover: Aluminum, Anodized Plate: Aluminum, Hard Anodized Color: Blue exterior, White Text

Dimensions

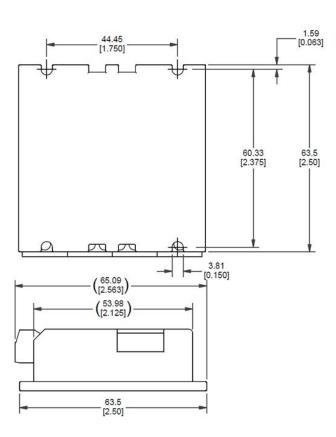


Figure 1: Dimensions Diagram

5. PIN ASSIGNMENTS

PIN#	FUNCTION	DESCRIPTION
1	Power Ground	The ground or return of power supply connects here.
2	+V	Motor Supply Voltage. +18 to +80 VDC
3	Phase A	A of the stepping motor
4	Phase A-	A- of the stepping motor
5	Phase B	B of the stepping motor
6	Phase B-	B- of the stepping motor
7	Enable/Disable Input	Used to ground to the logic functions (i.e. step pulses or direction)
8	Direction Input	This input is used to change the rotation direction of the motor
9	Step Clock	Negative (falling) going edge on this input advances the motor one increment. The size of the increment is depending on the image set.
10	Opto Supply	+5 VDC input used to supply power to the isolated logic inputs. A resistor must be used if the supply is greater than 5 VDC.
11	Current Set	Connects to the open-collector drive.
12	Current Set	Connects to the open-collector drive.

Table 1: Pin Assignments

6. CONNECTION SPECIFICATIONS

List of Parts

Connection of the R701 is simple. Here is what you need:

- External Main Power Supply (+18 to +80 VDC)
- +5 VDC Power Supply used as the Opto Supply (See Table 2)
- A Function Generator
- An appropriate Bipolar Stepper Motor

WARNING! Power supply voltage in excess of +80 VDC will damage the R701P. Do not short the motor leads to each other or to ground. This will also damage the board.

WARNING! Do not shut off the power while the motor is moving, this could result in a catastrophic failure of the drive.

How to Connect

For safety reasons, please connect the power supply (Terminal 2) last.

Terminal 1: Power Ground - Connect the power supply ground here.

Terminal 2: +18 to 80 VDC - Connect the positive (+) end of the power supply here.

The maximum power supply current required is 67% of the motor's rated phase current. An unregulated power supply may be used as long as the voltage stays between the limits; keep the ripple voltage to 10% or less for best results. The drive has a 2 second power-on reset time before the motor is energized.

Optional:

If the power supply is more than 1 foot (300 mm) away from the driver, a $470 \,\mu\text{F}$ capacitor can be connected across the R701P power supply terminals. Keep the capacitor lead length to 1 inch (25 mm) or less. Note: If using multiple drives daisy chained on a single power supply you will need a capacitor for each drive.

The choice of power supply voltage depends on the high speed performance required of the motor. Doubling the voltage doubles the motor's high speed power. In all cases the power supply voltage should be no less than 4 times or no more than 25 times the motor's rated voltage. The motor may not run as smoothly as possible if it is too low, and the board may be **damaged** if it is run too high.

Terminal 3: Phase A Terminal 4: Phase A

Terminal 5: Phase B Terminal 6: Phase B

Connect one motor winding to terminals 3 & 4. Connect the other winding to terminals 5 & 6. Turn the power supply off when connecting or disconnecting the motor. If the motor turns in the wrong direction, reverse the motor windings for terminal 3 & 4. Please see the "8. Motor Connections" section for connecting 4, 6, or 8 wire motors.

Terminal 7: Disable – Short this pin to filter ground (pin 12, end of current set resistor slot) to disable the unit. Shorting it to this ground forces winding currents to zero and stops all output switching activity. The R701P will continue totalizing step and direction inputs if any are sent. The power supply current drops to less than 15mAmps. The motor will return to its original position when the disable input is released if no step pulses have been sent and the motor has not been moved more than 20 microsteps (2 full steps).

Terminal 8: Direction Input - Closing this connection to signal ground will change the direction of the rotating motor

Terminal 9: Step Input - Connect the positive (+) terminal of the function generator to this terminal. If you have an alternative pulse generator, connect it to this terminal.

Terminal 10: +3.3VDC, +5VDC, GND - Connect the +3.3VDC, +5VDC, or GND

These inputs are optically isolated from the rest of the drive. Terminal 10 is the common anode connection for the opto-isolators and must be connected to the +3.3VDC,+5 VDC supply of your indexer or pulse generator.

These inputs are meant to be driven by 3.3V to 5.5V logic capable of sourcing or sinking 2.5 mA of current. The minimum logic "0" time is .5 usec while the minimum logic "1" time is 4 usec. Microstepping occurs on the falling edge of the step input.

Terminal 11: Current Set (OPTIONAL) - Connect one end of the resistor to this terminal. **Terminal 12: Current Set (OPTIONAL)** - Connect the other end of the resistor to this terminal. This terminal is a filter ground.

Resistor Values to set the Current

DIP switches 1, 2, 3, 4, and 5 must be set to ON if an external current set resistor is used.

Please use the corresponding resistor for the correct current setting for your motor.

If you are using the driver with currents of 1 to 7 Amps, R = 47*I/(7-I). (R = Resistor in $k\Omega$)

Current (Amps)	Resistor Value (Ohms 5%)
1	8200
2	18000
3	36000
4	62000
5	120000
6	270000
7	Open

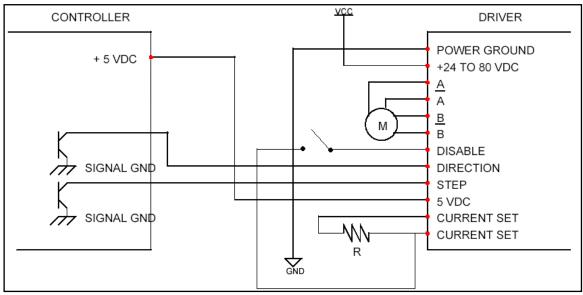


Figure 3: Connections Diagram

Resistor Values for the Opto Supply

The optocouplers must be powered by an external power supply to maintain isolation. The Opto Supply (Terminal 10) for the optocouplers can be between +5 to 24 VDC with respect to the signal input. It is recommended to use a +5 VDC Opto Supply in order to limit the current going into the optocouplers to 16 mA. However, if the supply is greater than +5 VDC then a resistor must be connected in series with the STEP line and another one in series with the DIRECTION line to maintain 16 mA of current running through the optocouplers. Refer to Table 4 for the corresponding Resistor Values.

The Resistor shall be put in series with the Positive Terminal of the Opto Supply and with Terminal 8 (Direction) and Terminal 9 (Step).

Opto Supply	Resistor Value (Ohms 5%)
5 V	-
10 V	330 Ohm, 1/8 Watt
15 V	680 Ohm, 1/4 Watt
20 V	1.0K Ohm, 1/4 Watt
24 V	1.2K Ohm, 1/2 Watt

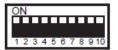
Table 4: Opto Supply Resistor Values

7. CONFIGURING AND CONTROL OF THE R701P

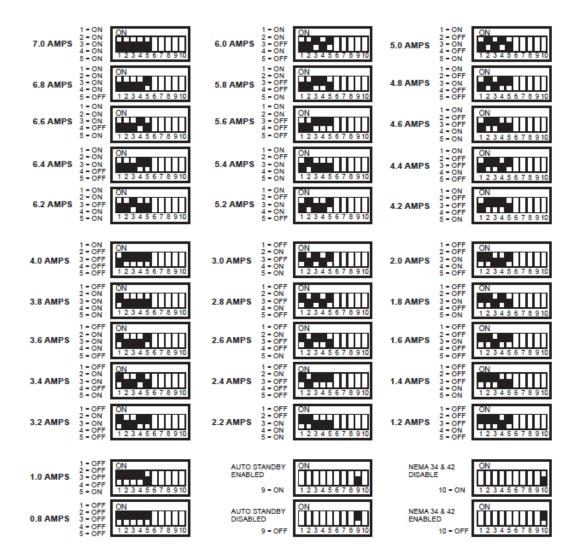
Adjust Trimpot

This trimpot adjusts the motor for the smoothest possible low speed operation. Set the motor speed to about ¼ revolutions per second, and then, using a flathead screwdriver turn the trimpot until a distinct null is noted in the motor's vibration. This will result in the most even microstep placement for a given motor and power supply voltage. The trimpot is located on the opposite side of main connector on the driver.

Auto Current Reduction


The R701P reduces motor phase current to 70% of the set value when the motor is holding. To disable this feature, set SW9 "OFF". Choices for hold current are 70% or 100% for the R701P.

NEMA 34 and NEMA 42 Motor


The R701P offers better performance options when using NEMA 34 or NEMA 42 sized motors. This option will adjust the midband compensation circuit to optimize performance for larger frame size motors. To enable this fuction, set SW10 to "OFF". Size NEMA 17 and NEMA 23 motors should have SW10 set to "ON".

OPTION SET SWITCHES

DEFAULT SWITCH SETTINGS

1 = CURRENT SET 6 = NOT USED 2 = CURRENT SET 7 = NOT USED 3 = CURRENT SET 8 = NOT USED 4 = CURRENT SET 9 = AUTO STANDBY 5 = CURRENT SET 10 = NEMA 34 & 42 MOTOR

Main Connector

The R701P uses a 2-piece modular main connector. The connector is split into two pieces: Terminals 1 through 6 (power supply and motor leads) and Terminals 7 through 12 (control interface). Each can be removed separately by pulling the connector body upwards and off of the mating header pins on the R701P. You may need to remove the connectors to mount the R701P properly to a chassis.

8. MOTOR CONNECTIONS

Step Motors have 4, 6, or 8 wires. To better understand how to connect your step motor with your R701P Driver, follow the Figures below for the corresponding motor. NOTE: The dots indicate the starting position of the wires when wound.

4 Lead Wire Motor Connection

Connect one set of windings to the A terminals. Connect the other set of windings to the B terminals. If the set of windings is unclear, take a pair of wires; use an ohmmeter to check for continuity. When you find the first two wires that have continuity, connect it to the A terminals. Connect the other two to the B terminals.

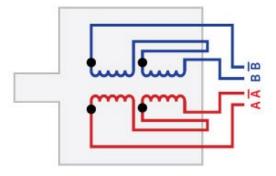


Figure 5.1: 4 Lead Wire Motor Connection

6 Lead Wire Motor Connection (Half Winding)

Six wire motors can be wound in two ways: Half Winding and Full Winding. Six wire motors contain a center tap on each of the two windings. For a half-winding connection, the center tap and one end of the wires are used.

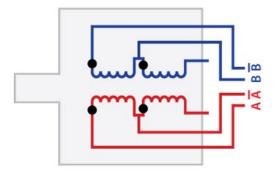


Figure 5.2: 6 Lead Wire Half Winding Connection

6 Lead Wire Motor Connection (Full-Winding)

For a full winding connection, use both end wires, the center tap is ignored. (NC: No Connection).

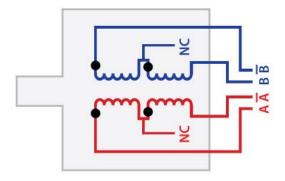


Figure 5.3: 6 Lead Wire Full Winding Connection

8 Lead Wire Motor Connection (Parallel Connection)

Eight wire motors can be connected in two ways: Parallel and Series. When in parallel, the wires are simply connected such that the beginning of each winding are connected together.

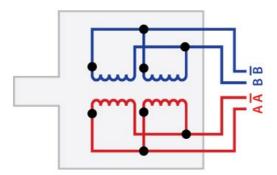


Figure 5.4: 8 Lead Wire Parallel Connection

8 Lead Wire Motor Connection (Series Connection)

Be sure to set the drive current to exactly half of the motor's rated parallel current rating when using the series connection.

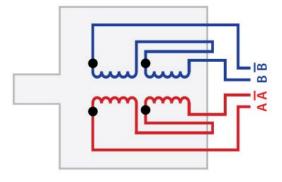


Figure 5.5: 8 Lead Wire Series Connection

9. TROUBLESHOOTING & FAQ

The Motor is in Holding Position, but does not rotate:

This means that Power is being supplied to the driver and motor, so the power supply is OK. However, the signal generator might be causing the problem. Try changing the signal to TTL. If this doesn't help, is the external +5 VDC Power connected? Be sure that the step pulses are a 0 to 5V squarewave with even on and off time.

I did the resistor calculation, but there is no standard resistor at that value. Is it better to use the higher or lower value resistor?

We recommend that you use the resistor that will give you the lower current output to be on the safe side.

Copyright © 2020 Lin Engineering, Inc. All rights reserved. Lin Engineering is a trademark or registered trademark of Lin Engineering Inc. and/or its affiliates in the U.S.A. and/or other countries.

All other trademarks and registered trademarks are property of their respective owners The information in this document is provided in connection with Lin Engineering Inc. and/or its affiliates' products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Lin Engineering products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, LIN ENGINEERING AND/OR ITS AFFILIATES ASSUME NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL LIN ENGINEERING AND/OR ITS AFFILIATES BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF LIN ENGINEERING AND/OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Lin Engineering and/or its affiliates make no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Lin Engineering Inc. and/or its affiliates do not make any commitment to update the information contained in this document.

For more information, visit https://www.LinEngineering.com/legal. End User Product Agreement To view the Lin Engineering End User Product Agreement, go to: https://www.LinEngineering.com/en-us/legal/license-agreements.